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Exact expressions are derived for forces within the mixed and pure fixed-node diffusion quantum Monte
Carlo �DMC� methods. These expressions include the “nodal terms” which arise from the discontinuity in the
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terms, and demonstrate that their inclusion leads to very accurate forces.
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I. INTRODUCTION

The diffusion quantum Monte Carlo �DMC� method is the
most accurate approach available for calculating the total en-
ergies of solids and large molecules.1 Energy gradients are
also of great significance in quantum mechanical calcula-
tions, because they give the forces on atoms which may be
used to relax structures and perform molecular dynamics
simulations. Progress in such calculations using DMC meth-
ods has, however, been held up by difficulties encountered in
evaluating forces accurately and efficiently.

The DMC method is based on imaginary time evolution,
which projects out the lowest energy many-body wave
function.1 The fermionic symmetry is maintained by fixing
the nodal surface �the surface on which the wave function is
zero and across which it changes sign� to be that of an anti-
symmetric trial wave function, �T. The nodal surface divides
the wave function into nodal pockets, and the DMC algo-
rithm gives the lowest energy solution � within each pocket.

The Hellmann-Feynman theorem �HFT� implies that the
force is given by the expectation value of the gradient of the
Hamiltonian with respect to the relevant parameter, �, when
the wave function is an exact eigenstate.2,3 Standard fixed-
node DMC samples the “mixed” probability distribution
�T�. It is straightforward to evaluate the HFT expression
for the energy gradient within DMC, but it does not give the
exact gradient of the DMC energy unless �T is exact. If �T
is not exact, the correct energy gradient is obtained only
when the Pulay correction terms4 are included, which contain
the gradient of the wave function with respect to �. Mixed
DMC calculations of forces including approximate Pulay
terms have been reported in Refs. 5 and 6.

One approach to reducing the size of the Pulay terms is to
evaluate the “pure” estimate of the HFT operator7 by sam-
pling the probability distribution ��. This approach still
does not produce the exact gradient of the DMC energy un-
less the trial nodal surface is exact, because it neglects a
Pulay term which can be written as an integral over the nodal
surface. The existence of this nodal term in the pure estimate
was pointed out in Ref. 8, and an explicit expression for it
was given in Ref. 9. However, a practical scheme for evalu-
ating this nodal term was not developed and it has been
neglected in force calculations.7,10 Here, we show that the
gradients of both the mixed and pure estimates of the energy
contain nodal Pulay terms, and we describe and test a prac-
tical scheme for estimating them.

This paper is organized as follows: In Sec. II, we intro-
duce the DMC energy when integrating over a single nodal
pocket. In Sec. III, we derive exact expressions for the first
derivative of the DMC energy, and in Sec. IV, we give prac-
tical expressions for estimating them. In Sec. V, we present
and discuss the results obtained for a test system, and we
draw our conclusions in Sec. VI.

II. DIFFUSION MONTE CARLO ENERGY AND
HAMILTONIAN

The fixed-node approximation is equivalent to placing an
infinite potential barrier everywhere on the nodal surface of
the trial wave function �T. The infinite potential barrier has
no effect on the energy if the trial nodal surface is exact, but
if it is inexact, the energy is always raised. It follows that the
DMC energy is always greater than or equal to the exact
ground state energy. In addition, it turns out that all the nodal
pockets of the exact ground state are equivalent11 and, if �T
has this tiling property, we need sample only one of its pock-
ets.

Consider a single nodal pocket � on whose boundary �
the trial function �T vanishes. Assume that the tiling prop-
erty holds and that �T�0 inside �. The DMC wave func-
tion � for the pocket can be written as

� = ���T��E, �1�

where � is the Heaviside function, and the envelope function
�E also vanishes on �. �E is positive within �, is differen-
tiable �at least up to second order� throughout � and on �,
and satisfies the equation

���T�Ĥ�E = ���T�ED�E �2�

throughout space. Thus, �=�E throughout � and on �, �
=0 outside �, and � has a kink at the nodal surface, as
illustrated in Fig. 1.

To obtain an expression for Ĥ�, we use the Laplacian of
�,

�2� = ���T��2�E + 2	��T� � �E · ��T

+ 	��T��E�2�T + 	���T��E���T�2, �3�

where 	 is the Dirac delta function and 	� is its first deriva-
tive. Since �T is positive within �, on �, ��T is parallel to
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the normal vector to the nodal surface pointing into �. As
the gradients ��E and ��T must be parallel on the nodal
surface, it follows that ��E ·��T can be replaced by
���E ���T�. The limiting behavior of �E on approaching �
from inside the pocket can be found using these results and a
multidimensional generalization of l’Hôpital’s rule, giving

��E

�E
=

��T

�T
on � . �4�

Using Eqs. �3� and �4� and the standard identity

xndn	�x�
dxn = �− 1�nn!	�x� , �5�

which is valid inside integrals, we find

Ĥ� = ���T�Ĥ�E −
1

2
	��T�� ���T�2

�T
+ �2�T��E. �6�

The term − 1
2	��T���2�T��E does not contribute to the ex-

pressions that follow because ��2�T��E is zero on the nodal
surface where the 	 function is evaluated.

Using Eqs. �1�, �2�, and �6�, one can define an effective
Hamiltonian including the 	 function term from Eq. �6�, in
which the 	 function term could be interpreted as an infinite

“nodal potential” causing the wave function � to vanish on
the nodal surface. We have, however, omitted such a defini-
tion since it is not relevant here.

The DMC energy for the nodal pocket is written as

ED =
� �Ĥ�dV

� ��dV

, �7�

where both � and � vanish on �. This expression includes
both the mixed ��=�T� and pure ��=�E� estimates, which
give the same DMC energy. The 	 function term in Eq. �6� is
nonzero only on �, where � vanishes, and, therefore, gives
no contribution to Eq. �7�. As the integrand in Eq. �7� is zero
outside the nodal pocket, we extend the region of integration
in Eq. �7� throughout space. As a result of this and the spe-

cific construction of �, one can show that Ĥ is Hermitian in
the following equations. This would generally not be the case
if the region of integration were limited to � �see Ref. 9�.

III. DERIVATIVE OF THE DIFFUSION MONTE CARLO
ENERGY

We consider now a general parameter �, e.g., a nuclear
coordinate or an electric field, which is used to vary the
Hamiltonian and upon which both the nodal surface �i.e.,
�T� and wave function � depend. The derivative of the
DMC energy with respect to � is

dED

d�
=
� �

dĤ

d�
�dV

� ��dV

+
� d�

d�
�Ĥ − ED��dV

� ��dV

+
� ��Ĥ − ED�

d�

d�
dV

� ��dV

. �8�

We now show that the second term on the right hand side
of Eq. �8� can be written as an integral over the nodal sur-
face. Using Eqs. �2� and �6�, which are valid throughout
space, and the standard identity,

	„�T�r�… = �
�

	�r − r��
���T�r���

dS�, �9�

we obtain

−
1

2

�
�

d��r��
d�

���T�r���
�E�r��
�T�r��

dS�

� ��dV

. �10�

With Eq. �4�, we then find
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FIG. 1. Schematic illustration of wave functions �T, �, and �E

�arb. units� plotted over a one-dimensional electron configuration
coordinate �arb. units�: �a� the trial wave function �T whose zeros
define the nodal surfaces � and, therefore, the nodal pocket �; �b�
the corresponding DMC wave function � for the nodal pocket �
where � is nonzero inside �, zero outside �, and its first derivative
is discontinuous at �; and �c� a wave function �E constructed to
equal � inside �, but which is differentiable �at least up to second
order� on �.

BADINSKI, HAYNES, AND NEEDS PHYSICAL REVIEW B 77, 085111 �2008�

085111-2



� d�

d�
�Ĥ − ED��dV

� ��dV

= −
1

2

�
�

���E�
d�

d�
dS

� ��dV

. �11�

We now use Eqs. �8� and �11�, and the fact that Ĥ is Hermit-
ian to obtain expressions for the energy gradient within
mixed and pure DMC. For the mixed estimator, we set �
=�T and obtain

dED

d�
=
� �T

dĤ

d�
�dV

� �T�dV

−
1

2

�
�

���E�
d�T

d�
dS

� �T�dV

+
� d�

d�
�Ĥ − ED��TdV

� �T�dV

. �12�

For the pure estimator, we set �=�E in Eqs. �8� and �11�,
and obtain

dED

d�
=
� �E

dĤ

d�
�dV

� �E�dV

−
1

2

�
�

���E�2
1

���E�
d�E

d�
dS

� �E�dV

.

�13�

If the trial nodal surface is independent of �, then d�E /d�
=d�T /d�=0 on the nodal surface and the nodal terms in
Eqs. �12� and �13� are zero. Equation �13� is equivalent to
Eq. �8� of Ref. 9.

The nodal term in Eq. �13� has a simple physical interpre-
tation. We can identify

d�E

d� / ���E� evaluated at a point on the
nodal surface as the rate at which the nodal surface of �E

moves as � is varied, and 1
2 ���E�2 evaluated on the nodal

surface as the kinetic energy density. Therefore, the nodal
surface integral is the rate of change of the kinetic energy
arising from the kink in � at the nodal surface.

IV. ESTIMATION OF THE NODAL TERMS

It is not clear how to evaluate the nodal terms by a Monte
Carlo integration over the nodal surface, but we can make
progress by expressing them as volume integrals. For mixed
DMC, we start from Eq. �11�, and use the Hermiticity to act

as Ĥ to the left in the second term on the right hand side of
Eq. �8�, obtaining

� �T�
1

�T
�Ĥ − ED�

d�T

d�
dV

� �T�dV

, �14�

which can be evaluated straightforwardly as an average over
the mixed distribution, �T�.

There is, however, an additional problem in mixed DMC,
because the third term on the right hand side of Eq. �12�,
which is a volume term, cannot be evaluated straightfor-
wardly because the quantity being averaged involves the de-
rivative of the DMC wave function d� /d�. We can, how-
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FIG. 2. �Color online� The graphs show the future walking HFT
forces �a.u.� on the H atom of the GeH molecule plotted against the
future walking projection time. The bond length is 2.929 a.u. The
mixed DMC forces correspond to the zero future walking projection
time, and the VMC forces are plotted at −1 a.u. to guide the reader.
Results for different basis sets are presented. The upper graph con-
tains results obtained with the very poor 8s2p basis �solid line� and
with the poor 8s4p basis �dashed line�. The lower graph contains
results obtained with the intermediate 8s4p1d basis �solid line� and
with the very good 19s12p8d basis �dashed line�. Note that the
range of the projection time is doubled for the poor and very poor
basis sets.
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ever, use the approximation introduced by Reynolds et al.,5

and used subsequently in Ref. 6, that

1

�

d�

d�
�

1

�T

d�T

d�
, �15�

which introduces an error of first order in ��T−��.
To evaluate the pure DMC nodal term, we first note that

the nodal surfaces of �E and �T must remain coincident for
all values of �, and hence,

1

���E�
d�E

d�
=

1

���T�
d�T

d�
on � . �16�

Using identities �4� and �16�, one can rewrite the mixed and
pure DMC nodal terms of Eq. �11� as

−
1

2

�
�

��
���T�

�T

1

�T

d�T

d�
dS

� ��dV

, �17�

with �=�T for mixed and �=�E for pure DMC. This ex-
pression shows that the mixed and pure DMC nodal terms
can be written as averages of a quantity involving only �T.

The pure nodal term of Eq. �17� with �=�E cannot be
evaluated straightforwardly, but it may be evaluated approxi-
mately using extrapolation12 or another suitable method. The
standard extrapolation formula relates the pure �P�, mixed
�M�, and variational �V� estimates by P�2M−V.

We must, therefore, evaluate the expression for the varia-
tional nodal term,

�
�

�T�T

���T�
�T

1

�T

d�T

d�
dS

� �T�TdV

. �18�

Since both d�T /d� and ���T� are continuous on the nodal
surface, the surface integrals for two bordering pockets must
cancel. Therefore, the integral over the nodal surface of all
nodal pockets must be zero. However, since we assumed that
the tiling property holds, so that each nodal pocket is equiva-
lent, the surface integral in Eq. �18� is also zero for each
nodal pocket. We explicitly tested this result, as reported in
Appendix C. As the variational nodal term is zero, the pure
DMC nodal term can be approximated as twice the mixed
DMC nodal term. The extrapolation approximation intro-
duces an error of second order in ��T−��.

Our final expression for the pure DMC energy derivative
is then

dED

d�
�
� �

dĤ

d�
�dV

� ��dV

+ 2
� �T�

1

�T
�Ĥ − ED�

d�T

d�
dV

� �T�dV

.

�19�

Note that the first term in Eq. �19� may be written as an
average over the pure distribution, ��, while the second is
an average over the mixed distribution, �T�. Practical meth-
ods for sampling the pure distribution, such as future
walking,17 may also provide the mixed distribution, in which
case the occurrence of both distributions in Eq. �19� is not a
significant disadvantage. Equation �19� contains an error of
order ��T−��2 from the use of extrapolation. In practice, it
may be necessary to use approximations to d�T /d�, and any
error in this quantity may result in a first order error in the
nodal term. The nodal term is, however, expected to be
small, in which case the resulting first order error should be
small.

V. TESTS ON GERMANIUM HYDRIDE

We have evaluated the forces on the atoms of a germa-
nium hydride dimer �GeH�. As the nodal terms arise from the
kinetic energy, it is sufficient to consider a model without
electron-electron interactions. Neglecting this interaction
substantially reduces the equilibrium bond length, but the
kinetic energy is still realistic. The advantage of studying a
noninteracting system is that we can control the quality of
the trial wave function more systematically. We have chosen
basis sets to cover the range of errors in the trial wave func-
tion that might be encountered in practical calculations for
the fully interacting system. We use single-determinant trial
wave functions obtained with four different Gaussian basis
sets. These vary in quality from very good �19s, 12p, 8d
functions�, intermediate �8s4p1d�, poor �8s4p�, to very poor
�8s2p�.

We used local pseudopotentials to represent the Ge4+ and
H+ ions. The Ge pseudopotential was taken as 1 /4 of the s
component and 3 /4 of the p component of the Hartree-Fock
pseudopotential from Ref. 13, while we used the s compo-
nent of the H pseudopotential. The noninteracting orbitals
were calculated using the GAMESS-US �Ref. 15� code. The
variational, mixed, and pure DMC forces are defined by
specifying the trial wave function �T and its derivative
d�T /d�. In our calculations, we have specified �T��� by
precisely minimizing the variational energy within the given
basis. Because the molecular orbital coefficients are calcu-
lated by minimizing the energy, their variation with � does
not contribute to the first derivative of the variational energy,
and we have neglected their influence on the mixed and pure
DMC forces. We have, therefore, evaluated d�T /d� from
the derivatives of the Gaussian basis functions with respect
to the bond length. This approach to estimating d�T /d� is
inexpensive and can be applied to large systems. It can also
be readily extended to interacting systems by including the
derivatives of the ion-centered terms in the Jastrow factor.

We performed fixed-node DMC calculations using the CA-
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SINO code.14 For a bond length of 2.929 a.u., which is close
to the experimental value of 3.003 a.u.,16 the errors in the
DMC energies are approximately zero for the most accurate
trial wave function, 0.002 35�2� a.u. for the intermediate trial
wave function, 0.005 66�2� a.u. for the poor trial wave func-
tion, and 0.009 25�1� a.u. for the very poor trial wave func-
tion. The variational Monte Carlo �VMC� errors are roughly
five times larger than the corresponding DMC errors. Pure
estimates were evaluated using extrapolation12 and future
walking.17 Tests of the convergence of the future walking
results are described in Appendix A.

It is useful to think about the error in a force in terms of
the associated error in the bond length. To convert errors in
forces to errors in bond lengths, we use the experimental
vibrational frequency of GeH of 1908 cm−1 to obtain the
force constant, finding that an error in the magnitude of the
force of 
F=0.001 a.u. is equivalent to an error in the bond
length of 
a=0.0073 a.u. It is worth noting that the equilib-
rium bond lengths obtained in less costly methods, such as
density functional theory �DFT�, are often rather accurate.
However, the error in DFT calculations depends on the func-
tional used and the system studied. A reasonable value for
the error in the equilibrium bond length which might be ob-
tained in a high quality DFT calculation for an sp-bonded
system is about 0.01 a.u.18 A useful DMC calculation of
equilibrium bond lengths should, therefore, surpass this level
of accuracy. DFT results often give poor descriptions of bond
breaking, and for such a process, it is likely that substantially
greater accuracy can be achieved with DMC calculations. In
any case, it is important to have DMC forces which represent
accurate derivatives of the DMC energy.

Table I gives results for the various terms in the forces on
the H and Ge atoms. The accurate energy gradients −dED /d�
were obtained from a set of DMC energy calculations at
different bond lengths, as described in Appendix B. The
mixed estimates of the HFT operator �A� give very poor
forces for all but the most accurate trial wave function, even
the intermediate trial wave function gives a bond-length er-
ror of 
a=0.14 a.u. from the force on the H atom and 
a
=0.09 a.u. from the force on the Ge atom. Note that the sum
of forces on the H and Ge atoms is not zero unless the HFT
and Pulay forces are evaluated exactly. The nodal term �B� is
larger for the poorer trial wave functions, but the Pulay terms
are dominated by the volume term �C�. The mixed estimate
of the total force �A+B+C� is much more accurate than the
mixed HFT term alone, but for the Ge atom with the poorest
trial wave function, 
a is still 0.034 a.u.

The pure estimates of the HFT force from extrapolation
and future walking �De and Df� differ significantly for the
poorer trial wave functions, indicating that the higher order
terms absent in the extrapolation are not negligible. Overall,
the pure estimates of the HFT force �without Pulay correc-
tions� are of similar quality to the total mixed estimates of
force �including Pulay terms�. The nodal terms in the pure
estimates �2B� are quite significant, in the worst case �poor
trial wave function and the Ge atom� amounting to 
a
=0.061 a.u. Including the nodal term substantially improves
the pure estimates of the total forces �De+2B and Df +2B� on
both the H and Ge atoms. In the worst cases, the errors

amount to 
a=−0.023 a.u. for the extrapolated HFT esti-
mate and only 
a=0.007 a.u. for the future walking esti-
mate. The future walking estimates of the pure DMC forces
obtained using our formula in Eq. �19� are, therefore, useful
by the criterion suggested above �error in bond length of less
than 0.01 a.u.�, for each of the four wave functions used. The
estimates for forces obtained using the previously available
expressions are, however, only satisfactory for trial wave
functions of higher quality than those which are normally
available in quantum Monte Carlo calculations.

VI. CONCLUSIONS

In conclusion, we have obtained exact expressions for the
forces within mixed and pure DMC. These expressions con-
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FIG. 3. �Color online� Future walking HFT forces �a.u.� on the
Ge atom. The other information is the same as described in the
caption of Fig. 2.
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tain terms which can be written as integrals over the nodal
surface. The mixed DMC nodal term can be evaluated
straightforwardly, and the pure DMC nodal term is approxi-
mately twice the mixed one. Using these results, we have
obtained an expression for the total force within the pure
DMC method 	Eq. �19�
 containing an approximate nodal
term that can be evaluated straightforwardly. The nodal term
has not been included in previous pure estimate force calcu-
lations. The extrapolation we have used in evaluating the
pure nodal term leads to an error of second order in the error
in the trial wave function. Tests for the GeH dimer have
shown that the pure nodal term can be significant and that
including it can significantly improve the pure estimate of
the force. We also calculated the total forces with the mixed
DMC method relying on the first order approximation of
Reynolds et al.5 of Eq. �15�. Our tests indicate that this ap-
proximation for the mixed estimation of the force is more
severe than the second order approximation used for the pure
estimation. As mentioned above, we have used very high
quality derivatives of the trial wave function to evaluate the
Pulay terms, but if the quality were lower, it would be even
more advantageous to use the pure estimate, as it depends
much less sensitively on the estimate of d�T /d�. Pure DMC
estimates are more costly to evaluate than mixed ones, but
our results indicate that, when the nodal term is included,
they can give very accurate forces.
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APPENDIX A: FUTURE WALKING DATA

In this appendix, we demonstrate that our future walking
HFT estimates are well converged with respect to the future
walking projection time. In Fig. 2, future walking HFT
forces on the H atom of the GeH molecule are plotted against
the future walking projection time. The HFT forces at zero
projection time correspond to the mixed DMC estimates, and
the VMC HFT forces are plotted at −1 a.u. to guide the
reader. Although the future walking estimates are only for-
mally exact for an infinite future walking projection time, we
find that a relatively small future walking projection time is
sufficient to obtained well-converged results. When using the
very poor or poor basis set, the future walking estimates
reach a plateau for projection times larger than 15 a.u. �upper
graph in Fig. 2�. For the intermediate or very good basis set,
a plateau occurs for projection times larger than 5 a.u. �lower
graph in Fig. 2�. When looking at the corresponding two
graphs for the future walking HFT forces on the Ge atom in
the GeH molecule in Fig. 3, we see a plateau that starts at
around 12 a.u. for the two poor basis sets, and a plateau that
starts at 7 a.u. for the intermediate and the very good basis
sets. These findings suggest that poorer basis sets require

longer future walking projection times. To account for the
different convergence behaviors of the future walking HFT
estimates given in Table I, we choose a projection time of
10 a.u. for the intermediate and very good basis sets, and
20 a.u. for the two poor basis sets.

APPENDIX B: ESTIMATING THE EXACT ENERGY
GRADIENT

To obtain the energy gradients −dED /d� in Table I of the
main text, we calculated the DMC total energy at bond

2.75 2.80 2.85 2.90 2.95 3.00 3.05
Ge-H Distance in a.u.

-8.02

-8.00

-7.98

-7.96

-7.94

-7.92

E
ne

rg
y

in
a.

u.

19s12p8d
8s4p1d
8s4p
8s2p

1 2 3 4 5
Order of Fitted Polynomials

0.350

0.351

0.352

0.353

0.354

0.355

0.356

E
ne

rg
y

G
ra

di
en

ti
n

a.
u.

19s12p8d
8s4p1d
8s4p
8s2p

FIG. 4. �Color online� The upper graph shows the DMC total
energy �a.u.� evaluated at six different geometries for the four dif-
ferent basis sets. In this graph, a cubic polynomial form is fitted to
the six energy data points for each basis set. The lower graph shows
the dependency of the gradient of the energy on the underlying
fitted polynomial form. The gradient of the energy is obtained from
the derivative of the polynomial evaluated at 2.929 a.u. The graph
shows the gradient of the energy in a.u. against the order of the
fitted polynomials.
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lengths of 2.787, 2.835, 2.882, 2.929, 2.976, and 3.024 a.u.
The total energies are plotted in the upper graph of Fig. 4.
We fitted these energies to polynomial forms and evaluated
the energy gradients as the derivatives of the polynomials at
2.929 a.u. To investigate the sensitivity of the energy gradi-
ents to the quality of the underlying fitted polynomial forms,
we tested polynomials from first to fifth order. The lower
graph of Fig. 4 shows the energy gradients for the four basis
sets against the order of the fitted polynomials. We see that,
for the very good and intermediate basis sets, the differences
between the gradients obtained from polynomials of third
and higher order are very small. For the two poor basis sets,
the gradients change slightly between the third and fifth or-
ders by a little more than one statistical error bar. We noted
that while the third and fourth order fits are almost identical,
the fifth order fit showed some small oscillations, indicating
that overfitting had occurred. We, therefore, decided to ob-
tain our best estimates by averaging the energy gradients
obtained from the third and fourth order polynomials.

APPENDIX C: NODAL TERM IN VARIATIONAL MONTE
CARLO

We verified the statement that the surface integral in Eq.
�18� is zero for each nodal pocket by evaluating an equiva-

lent expression to Eq. �18� within VMC. To do so, we trans-
form the numerator of Eq. �18� as

�
�

���T�
d�T

d�
dS = − �

�

d�T

d�
� �T · dS

= − �
�

� · �d�T

d�
� �T�dV

= − �
�

�T�T� 1

�T

d�T

d�

�2�T

�T

+
��T

�T
·

1

�T
�

d�T

d�
�dV , �C1�

where all quantities can straightforwardly be calculated in
VMC. We evaluated d�T /d� via finite differences by using a
very small displacement of the nuclei. For three different
single particle Gaussian basis sets 8s4p, 8s4p1d, and
19s12p8d, we calculated the VMC nodal term on the H and
Ge atoms of the GeH molecule at a bond length of 2.929 a.u.
For all three basis sets, we find that the VMC nodal terms are
zero within or close to one standard error of 0.0005 a.u.
when sampling all nodal pockets. When the sampling is lim-
ited to a single nodal pocket, the VMC nodal term remains
zero within or close to one standard error of 0.0006 a.u.
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